主頁(yè) > 教育培訓(xùn) > 中小學(xué)教育 > 名師總結(jié)的高中數(shù)學(xué)解題方法與技巧(2)

名師總結(jié)的高中數(shù)學(xué)解題方法與技巧(2)

  5.先點(diǎn)后面。

  近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面

  6.先高后低。

        即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。

  高中數(shù)學(xué)解題方法五:面對(duì)難題,講究方法,爭(zhēng)取得分

  會(huì)做的題目當(dāng)然要力求做對(duì)、做全、得滿分,而更多的問(wèn)題是對(duì)不能全面完成的題目如何分段得分。下面有兩種常用方法。

  1.缺步解答。

  對(duì)一個(gè)疑難問(wèn)題,確實(shí)啃不動(dòng)時(shí),一個(gè)明智的解題方法是:將它劃分為一個(gè)個(gè)子問(wèn)題或一系列的步驟,先解決問(wèn)題的一部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫(xiě)幾步,每進(jìn)行一步就可得到這一步的分?jǐn)?shù)。如從最初的把文字語(yǔ)言譯成符號(hào)語(yǔ)言,把條件和目標(biāo)譯成數(shù)學(xué)表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫(huà)出圖形等,都能得分。還有象完成數(shù)學(xué)歸納法的第一步,分類討論,反證法的簡(jiǎn)單情形等,都能得分。而且可望在上述處理中,從感性到理性,從特殊到一般,從局部到整體,產(chǎn)生頓悟,形成思路,獲得解題成功。

  2.跳步解答。

  解題過(guò)程卡在一中間環(huán)節(jié)上時(shí),可以承認(rèn)中間結(jié)論,往下推,看能否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即否得到正確結(jié)論,如得不出,說(shuō)明此途徑不對(duì),立即改變方向,尋找它途;如能得到預(yù)期結(jié)論,就再回頭集中力量攻克這一過(guò)渡環(huán)節(jié)。若因時(shí)間限制,中間結(jié)論來(lái)不及得到證實(shí),就只好跳過(guò)這一步,寫(xiě)出后繼各步,一直做到底;另外,若題目有兩問(wèn),第一問(wèn)做不上,可以第一問(wèn)為“已知”,完成第二問(wèn),這都叫跳步解答。也許后來(lái)由于解題的正遷移對(duì)中間步驟想起來(lái)了,或在時(shí)間允許的情況下,經(jīng)努力而攻下了中間難點(diǎn),可在相應(yīng)題尾補(bǔ)上。

  高中數(shù)學(xué)解題方法六:一“慢”一“快”,相得益彰

  有些考生只知道考場(chǎng)上一味地要快,結(jié)果題意未清,條件未全,便急于解答,豈不知欲速則不達(dá),結(jié)果是思維受阻或進(jìn)入死胡同,導(dǎo)致失敗。應(yīng)該說(shuō),審題要慢,解答要快。審題是整個(gè)解題過(guò)程的“基礎(chǔ)工程”,題目本身是“怎樣解題”的信息源,必須充分搞清題意,綜合所有條件,提煉全部線索,形成整體認(rèn)識(shí),為形成解題思路提供全面可靠的依據(jù)。而思路一旦形成,則可盡量快速完成。

  高中數(shù)學(xué)解題方法七:確保運(yùn)算準(zhǔn)確,立足一次成功

  數(shù)學(xué)高考題的容量在120分鐘時(shí)間內(nèi)完成大小26個(gè)題,時(shí)間很緊張,不允許做大量細(xì)致的解后檢驗(yàn),所以要盡量準(zhǔn)確運(yùn)算(關(guān)鍵步驟,力求準(zhǔn)確,寧慢勿快),立足一次成功。解題速度是建立在解題準(zhǔn)確度基礎(chǔ)上,更何況數(shù)學(xué)題的中間數(shù)據(jù)常常不但從“數(shù)量”上,而且從“性質(zhì)”上影響著后繼各步的解答。所以,在以快為上的前提下,要穩(wěn)扎穩(wěn)打,層層有據(jù),步步準(zhǔn)確,不能為追求速度而丟掉準(zhǔn)確度,甚至丟掉重要的得分步驟,假如速度與準(zhǔn)確不可兼得的說(shuō),就只好舍快求對(duì)了,因?yàn)榻獯鸩粚?duì),再快也無(wú)意義。

  高中數(shù)學(xué)解題方法八:應(yīng)用性問(wèn)題思路:面—點(diǎn)—線

  解決應(yīng)用性問(wèn)題,首先要全面調(diào)查題意,迅速接受概念,此為“面”;透過(guò)冗長(zhǎng)敘述,抓住重點(diǎn)詞句,提出重點(diǎn)數(shù)據(jù),此為“點(diǎn)”;綜合聯(lián)系,提煉關(guān)系,依靠數(shù)學(xué)方法,建立數(shù)學(xué)模型,此為“線”,如此將應(yīng)用性問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題。當(dāng)然,求解過(guò)程和結(jié)果都不能離開(kāi)實(shí)際背景。

  高中數(shù)學(xué)解題方法九:以退求進(jìn),立足特殊

  發(fā)散一般對(duì)于一個(gè)較一般的問(wèn)題,若一時(shí)不能取得一般思路,可以采取化一般為特殊(如用特殊法解選擇題),化抽象為具體,化整體為局部,化參量為常量,化較弱條件為較強(qiáng)條件,等等??傊?,退到一個(gè)你能夠解決的程度上,通過(guò)對(duì)“特殊”的思考與解決,啟發(fā)思維,達(dá)到對(duì)“一般”的解決。

  高中數(shù)學(xué)解題方法十:執(zhí)果索因,逆向思考,正難則反

  對(duì)一個(gè)問(wèn)題正面思考發(fā)生思維受阻時(shí),用逆向思維的方法去探求新的解題途徑,往往能得到突破性的進(jìn)展,如果順向推有困難就逆推,直接證有困難就反證,如用分析法,從肯定結(jié)論或中間步驟入手,找充分條件;用反證法,從否定結(jié)論入手找必要條件。

  高中數(shù)學(xué)解題方法十一:回避結(jié)論的肯定與否定,解決探索性問(wèn)題

  對(duì)探索性問(wèn)題, 不必追求結(jié)論的“是”與“否”、“有”與“無(wú)”,可以一開(kāi)始,就綜合所有條件,進(jìn)行嚴(yán)格的推理與討論,則步驟所至,結(jié)論自明。

  高中數(shù)學(xué)解題方法十二:講求規(guī)范書(shū)寫(xiě),力爭(zhēng)既對(duì)又全

  考試的又一個(gè)特點(diǎn)是以卷面為唯一依據(jù)。這就要求不但會(huì)而且要對(duì)、對(duì)且全,全而規(guī)范。會(huì)而不對(duì),令人惋惜;對(duì)而不全,得分不高;表述不規(guī)范、字跡不工整又是造成高考數(shù)學(xué)試卷非智力因素失分的一大方面。因?yàn)樽舟E潦草,會(huì)使閱卷老師的第一印象不良,進(jìn)而使閱卷老師認(rèn)為考生學(xué)習(xí)不認(rèn)真、基本功不過(guò)硬、“感情分” 也就相應(yīng)低了,此所謂心理學(xué)上的“光環(huán)效應(yīng)”。“書(shū)寫(xiě)要工整,卷面能得分”講的也正是這個(gè)道理。

  上面整理的名師總結(jié)的高中數(shù)學(xué)解題方法與技巧,希望對(duì)大家有所幫助!

免責(zé)聲明:該文觀點(diǎn)僅代表作者本人,查查吧平臺(tái)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)空間服務(wù),不承擔(dān)相關(guān)法律責(zé)任。圖片涉及侵權(quán)行為,請(qǐng)發(fā)送郵件至85868317@qq.com舉報(bào),一經(jīng)查實(shí),本站將立刻刪除。返回查查吧首頁(yè),查看更多>>
提示

該文觀點(diǎn)僅代表作者本人,查查吧平臺(tái)系信息發(fā)布平臺(tái),僅提供信息存儲(chǔ)空間服務(wù),不承擔(dān)相關(guān)法律責(zé)任。圖片涉及侵權(quán)行為,請(qǐng)發(fā)送郵件至85868317@qq.com舉報(bào),一經(jīng)查實(shí),本站將立刻刪除。

優(yōu)惠商城

更多